资源类型

期刊论文 794

会议视频 20

会议信息 1

年份

2024 1

2023 51

2022 58

2021 66

2020 45

2019 47

2018 42

2017 40

2016 34

2015 40

2014 26

2013 37

2012 47

2011 50

2010 68

2009 27

2008 33

2007 28

2006 8

2005 11

展开 ︾

关键词

能源 12

天然气 11

固体氧化物燃料电池 7

普光气田 7

燃料电池 7

勘探开发 6

能源安全 6

可持续发展 5

页岩气 5

天然气水合物 4

温室气体 4

中国 3

催化剂 3

氢能 3

绿色化工 3

采油工程 3

2035 2

CCS 2

SOFC 2

展开 ︾

检索范围:

排序: 展示方式:

Sensitivity analysis of a methanol and power polygeneration system fueled with coke oven gas and coalgas

Guoqiang ZHANG, Lin GAO, Hongguang JIN, Rumou LIN, Sheng LI

《化学科学与工程前沿(英文)》 2010年 第4卷 第4期   页码 491-497 doi: 10.1007/s11705-010-0511-z

摘要: The sensitivity analysis of a polygeneration energy system fueled with duo fuel of coke oven gas and coal gas is performed in the study, and the focus is put on the relations among syngas composition, conversation rate and performance. The impacts of the system configuration together with the fuel composition on the performance are investigated and discussed from the point of cascading utilization of fuel chemical energy. First, the main parameters affecting the performance are derived along with the analysis of the system configuration and the syngas composition. After the performance is being simulated by means of the Aspen Plus process simulator of version 11.1, the variation of the performance due to the composition of syngas and the conversion rate of chemical subsystem is obtained and discussed. It is obtained from the result that the proper conversion rate of the chemical subsystem according to the specific syngas composition results in better performance. And the syngas composition affects the optimal conversion rate of the chemical subsystem, the optimal point of which is around the stoichiometric composition for methanol production (CO/H = 0.5). In all, the polygeneration system fueled with coke oven gas and coal gas, which can realize the reasonable conversion of syngas to power and chemical product according to the syngas composition, is a promising method for coal energy conversion and utilization.

关键词: duo fuel of coke oven gas and coal gas     polygeneration of power and methanol     sensitivity analysis     the relation among energy utilization     syngas composition and chemical conversion rate    

Catalytic performance of Co-Mo-Ce-K/γ-Al

Yuqiong ZHAO, Yongfa ZHANG

《化学科学与工程前沿(英文)》 2010年 第4卷 第4期   页码 457-460 doi: 10.1007/s11705-010-0524-7

摘要: The catalytic performance of Co-Mo-Ce-K/γ-Al O catalyst for the shift reaction of CO in coke oven gas is investigated using X-ray diffraction (XRD) and temperature-programmed reduction (TPR). The results indicate that Ce and K have a synergistic effect on promoting the catalytic activity, and the Co-Mo-Ce-K/γ-Al O catalyst with 3.0 wt-% CeO and 6.0 wt-% K O exhibits the highest activity. CeO favors Co dispersion and mainly produces an electronic effect. TPR characterization results indicate that the addition of CeO -K O in the Co-Mo-Ce-K/γ-Al O catalyst decreases the reduction temperature of active components, and part of octahedrally coordinated Mo transforms into tetrahedrally coordinated Mo , which has a close relationship with the catalytic activity.

关键词: coke oven gas     water gas shift reaction     sulfur-tolerant catalyst     cerium dioxide    

Refrigeration cycle for cryogenic separation of hydrogen from coke oven gas

CHANG Kun, LI Qiang

《能源前沿(英文)》 2008年 第2卷 第4期   页码 484-488 doi: 10.1007/s11708-008-0096-0

摘要: Ten billion cubic meters of hydrogen are dissipated to the environment along with the emission of coke-oven gas every year in China. A novel cryogenic separation of hydrogen from coke oven gas is proposed to separate the hydrogen and liquefy it simultaneously, and the cooling capacity is supplied by two refrigeration cycles. The performance of the ideal vapor refrigeration cycle is analyzed with methane and nitrogen as refrigerant respectively. The results show that the coefficient of performance (COP) of methane refrigeration cycle is 2.7 times that of nitrogen refrigeration cycle, and the figure of merit (FOM) of methane refrigeration cycle is 1.6 times that of nitrogen refrigeration cycle. The performance of ideal gas refrigeration cycle is also analyzed with neon, hydrogen and helium as refrigerant respectively. The results show that both the coefficient of performance and figure of merit of neon refrigeration cycle is the highest. It is thermodynamically possible to arrange the refrigeration cycle with methane and neon as refrigerant, respectively.

Process analysis of syngas production by non-catalytic POX of oven gas

Fuchen WANG , Xinwen ZHOU , Wenyuan GUO , Zhenghua DAI , Xin GONG , Haifeng LIU , Zunhong YU ,

《能源前沿(英文)》 2009年 第3卷 第1期   页码 117-122 doi: 10.1007/s11708-008-0078-2

摘要: A non-catalytic POX of oven gas is proposed to solve the problem of secondary pollution due to solid wastes produced from the great amount of organic sulfur contained in oven gas in the traditional catalytic partial oxidation (POX) process. A study of the measurement of flow field and a thermodynamic analysis of the process characteristics were conducted. Results show that there exist a jet-flow region, a recirculation-flow region, a tube-flow region, and three corresponding reaction zones in the non-catalytic POX reformer. The combustion of oven gas occurs mainly in the jet-flow region, while the reformation of oven gas occurs mainly in the other two regions. Soot would not be formed by CH cracking at above 1200°C. Since there are very little C hydrocarbons in oven gas, the soot produced would be very tiny, even if they underwent cracking reaction. The integrated model for entrained bed gasification process was applied to simulate a non-catalytic POX reformer. It indicated that the proper oxygen-to-oven gas ratio is 0.22–0.28 at different pressures in the oven gas reformation process.

关键词: oven gas     non-catalytic POX process     syngas    

A comprehensive assessment on the durability of gas diffusion electrode materials in PEM fuel cell stack

Arunkumar JAYAKUMAR

《能源前沿(英文)》 2019年 第13卷 第2期   页码 325-338 doi: 10.1007/s11708-019-0618-y

摘要: Polymer electrolyte membrane (PEM) fuel cell is the most promising among the various types of fuel cells. Though it has found its applications in numerous fields, the cost and durability are key barriers impeding the commercialization of PEM fuel cell stack. The crucial and expensive component involved in it is the gas diffusion electrode (GDE) and its degradation, which limits the performance and life of the fuel cell stack. A critical analysis and comprehensive understanding of the structural and functional properties of various materials involved in the GDE can help us to address the related durability and cost issues. This paper reviews the key GDE components, and in specific, the root causes influencing the durability. It also envisages the role of novel materials and provides a critical recommendation to improve the GDE durability.

关键词: PEM fuel cell     gas diffusion electrode(GDE)     gas diffusion layer(GDL)     membrane electrode assembly     durability     fuel cell catalyst    

Life-cycle analysis of energy use and greenhouse gas emissions of gas-to-liquid fuel pathway from steelmill off-gas in China by the LanzaTech process

Xunmin OU, Xu ZHANG, Qian ZHANG, Xiliang ZHANG

《能源前沿(英文)》 2013年 第7卷 第3期   页码 263-270 doi: 10.1007/s11708-013-0263-9

摘要: The LanzaTech process can convert carbon monoxide-containing gases produced by industries, such as steel manufacturing, into valuable fuel products. The life-cycle analysis (LCA) of energy use and greenhouse gas emissions from the LanzaTech process has been developed for a Chinese setting using the original Tsinghua China Automotive LCA model along with a customized module developed principally for the process. The LCA results demonstrate that LanzaTech gas-to-liquid (GTL) processing in China’s steel manufacturing is favorable in terms of life-cycle fossil energy and can reduce greenhouse gas emissions by approximately 50% compared with the conventional petroleum gasoline. The LanzaTech process, therefore, shows advantages in both energy-savings and a reduction in greenhouse gas emissions when compared with most bio-ethanol production pathways in China.

关键词: life-cycle analysis (LCA)     gas-to-liquid (GTL)     LanzaTech process    

Comparison of combustion characteristics of petroleum coke and coal in one-dimensional furnace

Qulan ZHOU, Qinxin ZHAO, Guangjie ZHOU, Huiqing WANG, Tongmo XU, Shien HUI,

《能源前沿(英文)》 2010年 第4卷 第3期   页码 436-442 doi: 10.1007/s11708-009-0059-0

摘要: The effect of primary air fraction , outer secondary air swirl strength and excess oxygen coefficient on the combustion characteristics of petroleum coke, Hejin lean coal and Shenmu soft coal are researched on a one-dimensional furnace using a dual channel swirl burner. The results show that with the increase in primary air fraction , the NO emission concentrations of both Hejin lean coal and petroleum coke increase, and the combustion worsens in the earlier stage, but the burn-out rate of Shenmu soft coal is improved. The NO emission concentration obtains a minimum value with an increase in . The ignition and burn-out rate of petroleum coke and Shenmu soft coal are optimal when Ω is minimum and Ω=0.87, respectively. However, both the NO emission concentration of petroleum coke and Shenmu soft coal are minimum when Ω=1.08. The increase in excess oxygen coefficient delays the ignition of petroleum coke, worsens the combustion condition and increases the NO emission concentration, but it greatly decreases the NO emission concentration of Shenmu soft coal.

关键词: petroleum coke     Shenmu soft coal     Hejin lean coal     combustion characteristics     experimental research    

Approach and potential of replacing oil and natural gas with coal in China

Junjie LI, Yajun TIAN, Xiaohui YAN, Jingdong YANG, Yonggang WANG, Wenqiang XU, Kechang XIE

《能源前沿(英文)》 2020年 第14卷 第2期   页码 419-431 doi: 10.1007/s11708-020-0802-0

摘要: China’s fossil energy is characterized by an abundance of coal and a relative lack of oil and natural gas. Developing a strategy in which coal can replace oil and natural gas is, therefore, a necessary and practical approach to easing the excessive external dependence on oil and natural gas. Based on the perspective of energy security, this paper proposes a technical framework for defining the substitution of oil and natural gas with coal in China. In this framework, three substitution classifications and 11 industrialized technical routes are reviewed. Then, three scenarios (namely, the cautious scenario, baseline scenario, and positive scenario) are developed to estimate the potential of this strategy for 2020 and 2030. The results indicate that oil and natural gas replaced by coal will reach 67 to 81 Mt and 8.7 to 14.3 Gm in 2020 and reach 93 to 138 Mt and 32.3 to 47.3 Gm in 2030, respectively. By implementing this strategy, China’s external dependence on oil, natural gas, and primary energy is expected to be curbed at approximately 70%, 40%, and 20% by 2030, respectively. This paper also demonstrates how coal, as a substitute for oil and natural gas, can contribute to carbon and pollution reduction and economic cost savings. It suggests a new direction for the development of the global coal industry and provides a crucial reference for energy transformation in China and other countries with similar energy situations.

关键词: coal replacing oil and natural gas     energy security     external dependence     energy strategy     China    

Life cycle assessment and economic analysis of HFC-134a production from natural gas compared with oil-basedand coal-based production

《化学科学与工程前沿(英文)》 2022年 第16卷 第12期   页码 1713-1725 doi: 10.1007/s11705-022-2210-y

摘要: China is the largest producer and consumer of HFC-134a (1,1,1,2-tetrafluoroethane) in the world. Coal-based route is mainly adopted to produce HFC-134a, which suffers from large waste and CO2 emissions. Natural gas is a low-carbon and clean energy resource, and no research has been found on the environment and economy of producing HFC-134a from natural gas. In this study, CML 2001 method was used to carry out the life cycle assessment of natural gas (partial oxidation)-based and natural gas (plasma cracking)-based routes (abbreviated as gas(O)-based and gas(P)-based routes, respectively), and their environmental performances were compared with coal-based and oil-based routes. Meanwhile, considering that China is vigorously promoting the transformation of energy structure, and the application of electric heating equipment to replace fossil-based heating equipment in industrial field, which has a great impact on the environmental performance of the production processes, the authors conducted a scenario analysis. The results showed that the gas(O)-based route had the most favourable environmental benefits. However, the gas(P)-based route had the highest potential for reducing environmental burdens, and its environmental benefit was the most favourable in scenario 2050. Additionally, the economic performance of the gas(P)-based route was significantly better than that of gas(O)-based and coal-based routes.

关键词: life cycle assessment     economic performance     HFC-134a     natural gas     oil     coal    

Analysis of Flue Gas Pollutants Deep-removal Technology in Coal-fired Power Plants

Xiao-lu Zhang

《工程管理前沿(英文)》 2014年 第1卷 第4期   页码 336-340 doi: 10.15302/J-FEM-2014061

摘要: In recent years, frequent haze has made PM become a public hotspot. PM control has been added to the 2012 release “ambient air quality standard.” Currently flue gas pollutant control technology does not easily remove PM . Developing Flue Gas Pollutant Deep-removal Technology (DRT) for coal-fired power plants for deep-removing pollutants such as PM , SO , SO , and heavy metals, is an urgent problem. Based on the analysis of the necessity and existing problems of developing DRT suitable for China, this study focused on PM removal technology, low NO emission of ultra supercritical boiler under all load conditions, and the adaptability of SCR working temperature. Finally, the flue gas pollutant removal system at a 2×660MW supercritical power plant was introduced, and the roadmap for developing DRT for 1,000MW ultra supercritical units was analyzed.

关键词: Coal-fired power plant     flue gas pollutants     deep-removal     PM2.5 removal    

Bioenergy recovery from landfill gas: A case study in China

Wei WANG, Yuxiang LUO, Zhou DENG

《环境科学与工程前沿(英文)》 2009年 第3卷 第1期   页码 20-31 doi: 10.1007/s11783-009-0012-9

摘要: Landfill gas (LFG) utilization which means a synergy between environmental protection and bioenergy recovery was investigated in this study. Pressure swing adsorption technology was used in LFG purification, and laboratory experiment, pilot-scale test, and on-site demonstration were carried out in Shenzhen, China. In the laboratory experiment, A-type carbon molecular sieve was selected as the adsorbent by comparison of several other adsorbents. The optimal adsorption pressure and adsorption time were 0.25 MPa and 2 min, respectively, under which the product generation rate was 4.5 m /h and the methane concentration was above 90%. The process and optimization of the pilot-scale test were also reported in the paper. The product gas was of high quality compared with the National Standard of Compressed Natural Gas as Vehicle Fuel (GB18047-2000), when the air concentration in feed gas was under 10.96%. The demonstration project was composed of a collection system, production system, and utilization system. The drive performance, environmental protection performance, and economic feasibility of the product gas – as alternative fuel in passenger car, truck, and bulldozer – were tested, showing the feasibility technology for LFG utilization.

关键词: landfill gas (LFG)     compressed purified landfill gas (CPLG)     pressure swing adsorption (PSA)     alternative vehicle fuel     demonstration project    

The R&D of Flue Gas Pollutants Deep-Removal Technology for Coal-fired Power Plants

Xiao-lu Zhang

《工程管理前沿(英文)》 2015年 第2卷 第4期   页码 359-363 doi: 10.15302/J-FEM-2015057

摘要: The flue gas pollutants deep-removal technology (DRT) focusing on PM removal is the prime method of further reducing pollutants emission from coal-fired power plants. In view of the four key technological challenges in developing the DRT, studies were conducted on a series of purification technologies and the DRT was developed and successfully applied in 660 MW and 1000 MW coal-fired units. This paper analyzes the application results of the demonstration project, and proposes a roadmap for the follow-up researches and optimizations.

关键词: coal-fired power plant     pollutants emission reduction     PM2.5     flue gas pollutants     deep-removal    

A review on transport of coal seam gas and its impact on coalbed methane recovery

Geoff G.X. WANG, Xiaodong ZHANG, Xiaorong WEI, Xuehai FU, Bo JIANG, Yong QIN

《化学科学与工程前沿(英文)》 2011年 第5卷 第2期   页码 139-161 doi: 10.1007/s11705-010-0527-4

摘要: This paper presents a summary review on mass transport of coal seam gas (CSG) in coal associated with the coalbed methane (CBM) and CO geo-sequestration enhanced CBM (CO -ECBM) recovery and current research advances in order to provide general knowledge and fundamental understanding of the CBM/ECBM processes for improved CBM recovery. It will discuss the major aspects of theory and technology for evaluation and development of CBM resources, including the gas storage and flow mechanism in CBM reservoirs in terms of their differences with conventional natural gas reservoirs, and their impact on CBM production behavior. The paper summarizes the evaluation procedure and methodologies used for CBM exploration and exploitation with some recommendations.

关键词: mass transport     coal seam gas (CSG)     coalbed methane (CBM)     coal     CBM recovery     carbon dioxide storage    

Production of hydrogen from fossil fuel: A review

《能源前沿(英文)》 2023年 第17卷 第5期   页码 585-610 doi: 10.1007/s11708-023-0886-4

摘要: Production of hydrogen, one of the most promising alternative clean fuels, through catalytic conversion from fossil fuel is the most technically and economically feasible technology. Catalytic conversion of natural gas into hydrogen and carbon is thermodynamically favorable under atmospheric conditions. However, using noble metals as a catalyst is costly for hydrogen production, thus mandating non-noble metal-based catalysts such as Ni, Co, and Cu-based alloys. This paper reviews the various hydrogen production methods from fossil fuels through pyrolysis, partial oxidation, autothermal, and steam reforming, emphasizing the catalytic production of hydrogen via steam reforming of methane. The multicomponent catalysts composed of several non-noble materials have been summarized. Of the Ni, Co, and Cu-based catalysts investigated in the literature, Ni/Al2O3 catalyst is the most economical and performs best because it suppresses the coke formation on the catalyst. To avoid carbon emission, this method of hydrogen production from methane should be integrated with carbon capture, utilization, and storage (CCUS). Carbon capture can be accomplished by absorption, adsorption, and membrane separation processes. The remaining challenges, prospects, and future research and development directions are described.

关键词: methane     catalytic conversion     natural gas     hydrogen production     CCUS    

标题 作者 时间 类型 操作

Sensitivity analysis of a methanol and power polygeneration system fueled with coke oven gas and coalgas

Guoqiang ZHANG, Lin GAO, Hongguang JIN, Rumou LIN, Sheng LI

期刊论文

Catalytic performance of Co-Mo-Ce-K/γ-Al

Yuqiong ZHAO, Yongfa ZHANG

期刊论文

Refrigeration cycle for cryogenic separation of hydrogen from coke oven gas

CHANG Kun, LI Qiang

期刊论文

Process analysis of syngas production by non-catalytic POX of oven gas

Fuchen WANG , Xinwen ZHOU , Wenyuan GUO , Zhenghua DAI , Xin GONG , Haifeng LIU , Zunhong YU ,

期刊论文

Innovative approach of low carbon and efficient utilization of coal resources: The polygeneration systemof a combination of the gasified coal gas and the pyrolyzed coal gas to form the synthetic gas

Kechang XIE, Fan LI

期刊论文

A comprehensive assessment on the durability of gas diffusion electrode materials in PEM fuel cell stack

Arunkumar JAYAKUMAR

期刊论文

Life-cycle analysis of energy use and greenhouse gas emissions of gas-to-liquid fuel pathway from steelmill off-gas in China by the LanzaTech process

Xunmin OU, Xu ZHANG, Qian ZHANG, Xiliang ZHANG

期刊论文

Comparison of combustion characteristics of petroleum coke and coal in one-dimensional furnace

Qulan ZHOU, Qinxin ZHAO, Guangjie ZHOU, Huiqing WANG, Tongmo XU, Shien HUI,

期刊论文

Approach and potential of replacing oil and natural gas with coal in China

Junjie LI, Yajun TIAN, Xiaohui YAN, Jingdong YANG, Yonggang WANG, Wenqiang XU, Kechang XIE

期刊论文

Life cycle assessment and economic analysis of HFC-134a production from natural gas compared with oil-basedand coal-based production

期刊论文

Analysis of Flue Gas Pollutants Deep-removal Technology in Coal-fired Power Plants

Xiao-lu Zhang

期刊论文

Bioenergy recovery from landfill gas: A case study in China

Wei WANG, Yuxiang LUO, Zhou DENG

期刊论文

The R&D of Flue Gas Pollutants Deep-Removal Technology for Coal-fired Power Plants

Xiao-lu Zhang

期刊论文

A review on transport of coal seam gas and its impact on coalbed methane recovery

Geoff G.X. WANG, Xiaodong ZHANG, Xiaorong WEI, Xuehai FU, Bo JIANG, Yong QIN

期刊论文

Production of hydrogen from fossil fuel: A review

期刊论文